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Motion of deformable drops in pipes and channels using
Navier–Stokes equations
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SUMMARY

The motion of deformable drops in pipes and channels is studied using a level set approach in order to
capture the interface of two fluids. The interface is described as the zero level set of a smooth function,
which is defined to be the signed normal distance from the interface. In order to solve the Navier–Stokes
equations, a second-order projection method is used. The dimensionless parameters of the problem are
the relative size of the drop to the size of the pipe or channel cross-section, the ratio of the drop viscosity
to the viscosity of the suspending fluid and the relative magnitude of viscous forces to the surface tension
forces. The shape of the drop, the velocity field and the additional pressure loss due to the presence of
the drop, varying systematically with the above-mentioned dimensionless parameters, are computed.
Copyright © 2000 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The motion of deformable drops in two-dimensional channels or in circular tubes is of interest
in a variety of industrial, technical and biological applications. Much of the earliest interest in
this subject was motivated by the suggested analogy between the drop motion and the motion
of blood cells in capillary tubes.

This analogy was also the motive for us to perform this study. Actually, various models were
used to simulate the single file flow of red blood cells in microcirculation. Poulou [1] modelled
the red blood cells as rigid particles and studied the partitioning of these particles at divergent
tubes. Queguiner and Barthes-Biesel [2] used capsules for modelling of red blood cells and
studied the axisymmetric motion of capsules through cylindrical channels.

These flow systems also arise in many polymer processing operations, as well as in
two-phase flow through porous media.
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There have been several theoretical and experimental studies of the motion of drops through
two-dimensional channels and circular tubes. A recent numerical study is that of Martinez and
Udell [3]. These authors obtained numerical solutions of the creeping flow equations using a
boundary integral method (BIM). They performed a detailed examination of the effects of
capillary number, viscosity ratio and drop size on the deformation and speed of the drop, as
well as on the additional pressure loss due to the presence of the drop. Borhan and Mao [4]
studied the effect of surfactants on the motion of drops through circular tubes using a BIM.
Tsai and Miksis [5] studied the dynamics of a drop in a straight as well as constricted tube
using a BIM. Manga [6] studied the dynamics of drops in branched two-dimensional channels
using also a BIM. A recent experimental study is that of Olbricht and Kung [7]. They studied
the deformation and break-up of liquid drops in low-Reynolds number flow through a
capillary tube for sizes of drop comparable with the tube diameter. A recent review of research
on drops may be found in Reference [8].

Here we study the motion of drops in two-dimensional channels and axisymmetric circular
tubes, using a new method for this area of research. The method we use was introduced by
Sussman et al. [9] for the two-dimensional case, and it was applied by them to study the
motion of rising air bubbles in water and falling water drops in air for the case of ambient
flow. This method uses a level set approach coupled with a projection methodology. With this
approach, for each time step the velocity field is calculated initially by the solution of the
two-dimensional, full Navier–Stokes equations for incompressible flow using a second-order
projection method, which implements a second-order upwind procedure for differencing the
convective terms. Then, using the computed velocity field, the interface is identified as the zero
level set of a smooth function, which evolves in time by the velocity field. This approach allows
for large density and viscosity ratios as well as surface tension. The important feature of the
method is that the level set function is maintained as a distance function for all time without
reconstructing the interface. This prevents the interface from ever changing thickness. The
formulation automatically takes care of merging and breaking the interface.

We extend this method for the axisymmetric case and we apply it to a problem where the
effect of bounding walls is evident. Results are compared for the two-dimensional case with
results obtained by Audet [10] for solid cylindrical particles. In our problem, we simulate the
solid particles as very viscous drops (viscosity ratio equal to 100). For the axisymmetric case,
we compared our results with results obtained by Martinez and Udell [3]. For the two-dimen-
sional case, we performed a study on the influence of the non-dimensional parameters of the
problem on drop deformation, drop speed and on the additional pressure drop due to the
presence of the drop. These results agree qualitatively with the results of Martinez and Udell
[3] for the axisymmetric case.

The statement of the problem is presented in Figure 1. An initially cylindrical or spherical
drop is placed in the inlet, at the centreline of a channel or tube respectively. The density of
the drop is equal to the density of the suspending fluid, so there are no buoyancy effects. The
viscosity of the drop is generally different from that of the suspending fluid. Surface tension
forces may or may not act on the interface of two fluids. The undisturbed flow inside the tube
can be developing Poiseuille or developed Poiseuille flow. The evolutions of shape of the drop
as well as velocity and pressure fields are estimated as the drop travels along the channel or
tube.

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 34: 609–626
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Figure 1. The initial (t %=0) position and the shape of drop profile is shown. The initial velocity field is
that of Poiseuille flow.

2. DESCRIPTION OF ALGORITHM

2.1. Equations of motion

In our study we shall consider the motion of cylindrical drops in two-dimensional channels and
of spherical drops in circular straight tubes. We shall denote the viscosity inside the drop by
mb and for the continuous phase by mc. The density of the drop is assumed equal to the density
of the continuous phase and is denoted by r.

The equations of motion that govern the flow field are given by the incompressible
Navier–Stokes equations excluding the body force and including a surface tension force

ut+ (u·9)u=
1
r

(−9p+9 ·(2mD)+skd(d)n) (1)

9 ·u=0 (2)

where u= (u, 6) is the fluid velocity, r is the constant density for both fluids, m=m(x, t) is the
function of fluid viscosity that is later determined by the constant viscosities of two fluids, and
D is the rate of deformation tensor. The surface tension term is considered to be a force
concentrated on the interface. We denote s as the surface tension, k as the curvature of the
interface, d as the normal distance to the interface, d as the Dirac delta function, and n as the
unit outward normal vector at the interface.

2.2. Projection

The solution of the system of Equations (1) and (2) gives directly the velocity field of the flow.
For the solution, a second-order projection method is used as follows:

From Equation (1) we have

Lu=ut+9p/r (3a)

Lu=
1
r

(9 ·(2mD)+skd(d)n)− (u·9)u (3b)

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 34: 609–626
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It is well established that if the initial value problem of Equations (3a) and (3b) is well posed,
then there exists a unique decomposition (Hodge decomposition), whereby

Lu=Vd+9f (4)

where Vd is divergence free, f is a scalar function and VdÞ9f. Comparing Equations (3a) and
(4) and taking into account that ut is divergence free according to the continuity equation for
incompressible fluids and p/r is a scalar function, it is concluded that Equation (3a) is the
unique decomposition of Lu.

In order to compute ut we take the curl of both sides of Equation (3a) to obtain

9×Lu=9×ut (5)

as 9×9p=0 by the definition of these operators. Given any divergence-free vector Vd, there
exists a vector potential C, such that Vd=9×C. Therefore, we can write

ut=9×C (6)

Furthermore, in two dimensions or for axisymmetric fields, we have C= (0, 0, c). So,
Equation (5) can now be written as

9×Lu=9× (9×C)=9(9 ·C)−92C (7a)

Taking into account that C= (0, 0, c), we have 9 ·C=0 and 92C=92c. Hence, Equation
(7a) can be written as

−92c=9×Lu (7b)

The right-hand side of Equation (7b) can be calculated by computing the curl of Equation
(3b). So, if we define proper boundary conditions for c, we can estimate c from the solution
of Equation (7b). We define boundary conditions for c, taking into account its definition as
ut=9×C, where C= (0, 0, c). From this definition it can be calculated that

ut=
(c

(y
and 6t= −

(c

(x

and

dc=
�(c
(x

�
dx+

�(c
(y

�
dy= −6t dx+ut dy

For constant x we have dx=0 and the above equation becomes dc=ut dy. Integrating this
equation from the down wall to the upper wall of the channel (from 0 to 2h) and taking into
account the expression of the volume flow rate Q=	0

2h u dy, we have the final equation
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dQ
dt

=c2h−c0

where t denotes time. Hence, if we define the actual flow rate to the channel by imposing
proper initial conditions for the velocity field, it must be for all t that dQ/dt=0, so that
c2h=c0 for x=constant. In addition, at the walls or at the symmetry axis 6t= −(c/(x=0,
which means c2h=c0=constant for all the length of the pipe.

At the entrance and outlet of pipe we assume steady conditions, which means ut=(c/(y=0
and 6t= −(c/(x=0. So, we can also define c=constant at the entrance or the outlet of the
pipe. As ut=9×C, the time evolution of velocity field can be estimated from the solution of
Equation (7b).

2.3. The le6el set formulation

In order to capture the interface, a level set technique is used. A level set function, f, is defined
at each point of the flow field as follows. At the point P(x, y), the absolute value of f is equal
to the distance of this point from the drop interface. If the point P(x, y) is inside the drop, f

is assigned a negative value, while if the point P(x, y) is outside of drop, f is assigned a
positive value. The drop interface corresponds to points for which f=0.

In order to compute the evolution of the drop interface in time, which means to compute
how the points of flow field for which f=0 move in time, we use the equation

ft+ (u·9)f=0 (8)

This equation is equivalent with the equation Df/Dt=0. f=0 is the material curve of the
drop interface and therefore it should move according to the equation Df/Dt=0 from the
definition of the material derivative D/Dt.

While f is initially defined as a distance function from the drop interface, it will not remain
so. Therefore, a way of reinitializing f in order to remain a distance function is necessary. The
method we used is described by Sussman et al. [9] and it is as follows. At each time instant,
we estimate, by solving Equation (8), the function f0(x) whose zero level set is the interface of
drop. f0(x) need not be a distance function, however. We construct a function f(x) with the
properties that its zero level set is the same as f0(x) and that f(x) is the signed normal distance
from the interface. This is achieved by solving the following problem to steady state:

ft=S(f0)(1−
fx
2 +fy

2) (9a)

f(x, 0)=f0(x) (9b)

where S(f0) is the sign function. For numerical purposes it is useful to smooth the sign
function as

S(f0)=f0/
f0
2+o2 (10)
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Equations (9a) and (9b) have the property that f remains unchanged at the interface.
Therefore, the zero level set of f and f0 are the same. Away from the interface, f will
converge to �9f �=
fx

2 +fy
2=1. Therefore, it will converge to the actual distance from the

drop interface. The above algorithm completely avoids finding the interface and it proves to be
efficient to implement numerically.

2.4. Smoothing

Special care must be taken when resolving the discontinuity of viscosity at the interface (at
f=0) and when computing the delta function that appears in the surface tension term. For
these reasons, the interface is not kept completely sharp but it is given a finite thickness of the
order of the mesh size to provide stability and smoothness. This thickness remains constant for
all time but decreases with a finer resolution of the grid.

In order to determine the viscosity m(f) at the interface, we use the following definition:

m(f)=

Á
Ã
Í
Ã
Ä

mc if f\a
mb if fB−a
m̄−Dm sin(pf/2a) otherwise

(11)

where 2a is the thickness of the interface and the following definitions are used:

m̄
mb+mc

2

Dm=
mb−mc

2

The surface tension force is represented in Equation (1) by F=skd(d)n·F, and can be cast in
the level set formulation and smoothed using

F=skd(d)n=sk(f)d(f)9f/�9f � (12)

where

n=9f/�9f � and k=9 ·n=9 · (9f/�9f �) (13)

Because f is maintained as a distance function we may numerically approximate d(f) by a
modified delta function, smoothed as follows:

d(f)=
!(1/2)(1+cos(pf/a)/a) if �f �Ba

0 otherwise
(14)

where a is the prescribed half-thickness of the interface.
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The contribution of surface tension to the right-hand side of Equation (7b) is

9×F= −s((k(f)d(f)fy)x− (k(f)d(f)fx)y)) (15)

If we write d(f) as (H(f)/(f, we can reduce Equation (15) to

9×F= −s(k(f)xHy−k(f)yHx)) (16)

The equation for H is

H(f)=

Á
Ã
Ã
Ã
Í
Ã
Ã
Ã
Ä

1
2

if f\a

−
1
2

if fB−a

1
2
�f

a
+

1
p

sin(pf/a)
�

otherwise

(17)

Implicit in the above formulae is that f is a distance function.

2.5. Pressure field estimation

Equation (3) can be written as

9p=r(Lu−ut) (18)

where Lu= (V1, V2) and ut= (ut, 6t)
V1, V2, ut, 6t have been computed for the determination of the velocity field as it was

described. Therefore, we have from Equation (18)

px=r(V1−ut) (19)

py=r(V2−6t) (20)

By integrating Equations (19) or (20), we can compute the pressure field. In order to compute
the pressure field more accurately instead of using Equations (19) or (20), we construct and
solve the following Equation (21). Adding Equations (19) and (20), we have the following
equation for the pressure field:

px+py=r(V1+V2)−r(ut+6t) (21)

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 34: 609–626
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In order to solve Equation (21) we use the following boundary conditions: at the upper wall,
py=0; at the axis of symmetry, py=0; at the inlet, p=0; and at the outlet, px=C, where C
is a known quantity from Equation (19).

In the case that surface tension is active, Equation (21) does not work due to the
discontinuity of px and py at the interface. In that case we solve Equation (19) at wall where
surface tension is not active, so p is computed at the wall. Starting from each grid point of the
wall, where p is known, and integrating Equation (20) perpendicular to the wall, i.e. along all
y grid lines, p is computed at all grid points of flow field.

2.6. Discretization

The discretization of Equations (7b), (8) and (9) is described in detail by Sussman et al. [9] for
the two-dimensional case. We have extended this discretization for the additional axisymmetric
terms. Here, we briefly state the main features of discretization as it is described in the
above-mentioned paper and we describe the discretization of Equations (19)–(21), which are
used for the computation of pressure.

A staggered mesh is used for velocity and the level set function. With s as the mesh size, we
define the points (i, j ) at the centre of the cells and the points (i−1

2, j−1
2) at the corner of the

cells

xi, j= ((i+1
2)s, ( j+1

2)s)

xi−1/2, j−1/2= (is, js)

ui, j=u(xi, j)

fi, j=f(xi, j)

pi−1/2, j−1/2=p(xi−1/2, j−1/2)

ci−1/2, j−1/2=c(xi−1/2, j−1/2)

i=0, . . . , M−1, j=0, . . . , N−1

The discrete operators are defined for divergence, gradient and curl operators. The final
difference formula of Equation (7b) that is used to estimate the function c is

(1−cs/y)ci−1/2, j−1/2+ (1−cs/y)ci−1/2, j+3/2+ (1+cs/y)ci+3/2, j−1/2

+ (1+cs/y)ci+3/2, j+3/2−4ci+1/2, j+1/2= − (9×Lu) (22)

where c=0 for the two-dimensional case and c=1 for the axisymmetric case.
In the right-hand side of Equation (22), convection terms, viscous terms and the surface

tension term are included. For the discretization of convection terms, a second-order essential
non-oscillatory (ENO) method is used. For the discretization of viscous stress tensor, central
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differencing is applied. In order to compute the surface tension contribution, we compute the
curvature k(f) of the interface and its derivatives (Equation (16)) with similar equations as
those used for the computation of viscous terms. The system of algebraic equations (22) is
solved by using a conjugate gradient method.

For evolution in time, a second-order Adams–Bashforth method is used. Similar equations
are used for the time evolution of the level set equation (9). An upwind scheme, in that it
differences in the direction of propagating characteristics, is used for the discretization of the
transport equation (8) in order to avoid numerical instabilities, because at this transport
equation there are no diffusion terms.

Equation (21), which is used for the computation of pressure when surface tension is not
active, is discretized as follows:

(px)i, j= (pi+1/2, j+1/2−pi−1/2, j+1/2+pi+1/2, j−1/2−pi−1/2, j−1/2)/2s (23a)

(py)i, j= (pi+1/2, j+1/2−pi+1/2, j−1/2+pi−1/2, j+1/2−pi−1/2, j−1/2)/2s (23b)

Adding Equations (23a) and (23b) and taking into account Equation (21), we have

pi+1/2, j+1/2−pi−1/2, j−1/2=s(r(V1+V2))i, j− (r(ut+6t))i, j (24)

Equation (19), which is used when surface tension is active, is discretized as follows:

pi+1/2,N−pi−1/2,N=s(r(V1−ut))i,N (25)

where N is the j grid line at the wall.
Equation (20) is integrated along j grid lines after estimation of pressure at the wall from

Equation (25)

pi+1/2, j−1/2=pi+1/2, j+1/2− (py)i+1/2, js, for j=N−1, 1 (26)

This integration does not create problems as the drop interface is crossed, because when the
interface is crossed, the actual value of py is used, which takes into account the surface tension
and the change in viscosity at the interface. py is not continuous at the interface, but the
summation of its actual value does not create problems, such that the solution of a differential
equation including py would create.

Equations (24) and (25) are solved using a conjugate gradient method.

3. RESULTS AND DISCUSSION

In this section the results of the numerical computations are compared with existing results. In
addition, results in terms of the effects of the non-dimensional parameters of the problems are
presented and discussed.

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 34: 609–626
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In both the two-dimensional and the axisymmetric cases, the non-dimensional parameters
that appear and affect the solutions are

1. The relative size of drop to the size of the channel or tube, i.e. k=r/h for the two-
dimensional case and k=r/R for the axisymmetric case, where r is the radius of the
undeformed cylindrical or spherical drop at the inlet of the channel or tube respectively, h
is the half-width of the channel and R is the radius of tube.

2. The ratio of drop viscosity mb to the suspending fluid viscosity mc, l=mb/mc.
3. The capillary number Ca=mcV/s, where V is the mean velocity of flow and s is the surface

tension. Therefore, Ca is the ratio of viscous forces to surface tension forces.
4. The Reynolds number, i.e. Re=rVD/mc, where D is the hydraulic diameter of the channel

or tube.

As a non-dimensional variable, the non-dimensional time is used, t %= tV/h for the two-
dimensional problem and t %= tV/R for the axisymmetric problem.

The values of parameters that were examined were chosen in such a way that a direct
comparison with existing results, obtained by other methods, could be done and, in addition,
the effect of variation of parameters for the two-dimensional case could be studied to some
extent. Table I shows the values of parameters covered in the numerical computations. For
each case we compute the evolution of drop shape as well as the additional pressure drop. The
term additional pressure drop DP+ is defined as the total pressure decrease over a distance
extending into the undisturbed flow ahead of and behind the drop, less the Poiseuille value
over the same distance and for the same volume flux of suspending fluid alone. The additional
pressure drop represents the local pressure loss due solely to the presence of the drop.

3.1. Two-dimensional case

3.1.1. Comparison with existing results. In this section we compare our results with the results
of Audet [10] for the motion of solid cylinders in channels. We model the solid cylinder as a
very viscous drop (viscosity ratio l=100). The viscosity of the suspending fluid is taken equal
to that used in the above-mentioned work. We study the motion of an initial cylindrical drop,
with k=0.8, l=100 and Ca=�.

In Figure 2, the evolution of the drop is presented, until its centre reaches the position
x/h=4. We see that it keeps almost its initial circular profile. Therefore, it could be a
reasonable model for the solid cylinder.

In Figure 3, we compare the velocity profiles of flow at a distance l=1 upstream of the
centre of drop. We also found good agreement when comparing the speed of the drop:

Table I. Parameters covered in numerical computations.

Two-dimensional case Axisymmetric case

0.726, 0.9Drop size, k 0.4, 0.8
Viscosity ratio, l 0.2, 5, 100 10, 0.1

0.1, 1.00.1, �Capillary number, Ca
Reynolds number, Re �1 �1

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 34: 609–626
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Figure 2. Evolution of an initially cylindrical drop with k=0.8, l=100 and Ca=� until its centre
reaches position x/h=4.

Figure 3. Velocity profile at position l=1. Upstream of the centre of the drop, for k=0.8, l=100 and
Ca=�. —, Present results; � � �, results from Audet [10]; – – –, Poiseuille flow without drop.

U/V=1.1 in our results and U/V=1.13 in the results of Audet [10], where U is the velocity
of the drop and V is the mean velocity of the suspending fluid.

In Figure 4, we compare the pressure profile along the channel wall when the centre of the
drop is at x/h=4. We see from this figure that the additional pressure drop is greater in our
results.

In Figure 5, we compare the pressure gradient along the channel wall when the centre of the
drop is at x/h=4.

In Figure 6, we compare the wall shear stress when the centre of the drop is at x/h=4.
All the above comparisons agree qualitatively, but there are some quantitative differences,

probably due to the fact that we used a finite viscosity ratio to model the solid cylinder.

3.1.2. Effect of drop size. The variations in drop shape with drop size are shown in Figure 7
for two values of k, k=0.4 and 0.8. Both profiles are presented at time t %=3. At time t %=0,
both drops were placed at the inlet of channel having a circular profile. Both shapes show a
much higher curvature at the nose of the drop than at the trailing end. Actually, the curvature
at the nose is positive while at the trailing end it is negative. The profile of a small drop is less
deformed from the initial circular shape than the profile of a large drop, although the

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 34: 609–626
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Figure 4. The pressure p along the channel wall. A drop of k=0.8, l=100 and Ca=� is on the
channel centreline at x/h=4. —, Present results; � � �, results from Audet [10]; – – –, Poiseuille flow

without drop.

Figure 5. The pressure gradient px along the channel wall. A drop of k=0.8, l=100 and Ca=� is on
the channel centreline at x/h=4. —, Present results; � � �, results from Audet [10].

deformation for both drops is large due to the lack of surface tension forces. For both drops,
a steady shape does not exist, but the drops will continue to deform in their course through the
channel, as computations have shown.

Estimating the velocity of a small drop from the distance that it travels in t %=3, we see that
it travels almost with a value of 1.5, which is the maximum velocity of flow for suspending
fluid away from the drop at the centre of the channel. Thus, small drops move at nearly the
local suspending fluid speed on the channel centreline, as it also reported by Martinez and
Udell [3] for the axisymmetric case.

In Figure 8, the pressure at the wall is presented for both drops. We can see from this figure
that for a small drop there is no remarkable additional pressure drop, while for a large drop
there is.

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 34: 609–626
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Figure 6. The wall shear stress txy. A drop of k=0.8, l=100 and Ca=� is on the channel centreline
at x/h=4. —, Present results; � � �, results from Audet [10].

Figure 7. Effect of drop size k on drop shape at t %=3 for l=5 and Ca=�. (1) k=0.8, (2) k=0.4.

Figure 8. Effect of drop size k on pressure distribution across the channel at t %=3 for l=5 and Ca=�.
—, k=0.8; � � �, k=0.4; – – –, Poiseuille flow.

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 34: 609–626
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3.1.3. Effect of 6iscosity ratio l. In Figure 9, the velocity profiles at a position where the centre
of the drop is located are presented for three different values of l. The interface of the drop
corresponds at the point of the curves where there is a discontinuity in the derivative of the
velocity profile. We see that as l increases, the shear rate inside the drop decreases and the
profile of velocity becomes more blunt. We see also that velocity inside the drop decreases as
l increases, i.e. the drop speed decreases as l increases. In addition, comparing curves (1), (2)
and (3) with the Poiseuille profile, we see that for l\1, the velocity inside the drop is smaller
than 1.5, i.e. the value predicted for Poiseuille flow of suspending fluid, while for lB1, the
velocity inside the drop is greater than 1.5.

In Figure 10, the variations in drop shape with l are shown for three different values of l

at t %=3. For l=100, the profile of the drop does not deviate much from the initial circular
profile. As l decreases, the drop extends further in the axial direction and the jet of suspending

Figure 9. Effect of viscosity ratio l on velocity profiles at the centre of the drops at t %=3 for k=0.8 and
Ca=�. (1) l=100, (2) l=5, (3) l=0.2, (0) l=1 (Poiseuille flow).

Figure 10. Effect of viscosity ratio l on drop shape at t %=3 for k=0.8 and Ca=�. (1) l=0.2, (2)
l=5, (3) l=100.
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fluid that penetrates into the trailing end of drop becomes larger. For l=0.2 and l=5, no
steady shape of drop was obtained in the numerical computations.

In Figure 11, the pressure distribution at the wall of the channel is presented for the three
different values of l. We can see that DP+ increases with l as well as the variation of pressure
at the wall over the drop. For the case of l=0.2, DP+B0, which means that the low viscosity
drop can be transported with less pressure gradient than if the channel contained only
suspending fluid flowing at the same bulk volume flux.

3.1.4. Effect of capillary number. In Figure 12, the variation in drop shape as affected by Ca
is shown for two different values of Ca. From this figure we can see the strong effect of Ca on
the drop deformation. For a large Ca, the deformation is large and the drop extends more in
the direction of the flow. Moreover, the curvature at the leading end is larger for the large Ca
and the curvature at the trailing end is negative, while for small Ca it is positive. In addition,
for Ca=0.1, a steady shape of drop exists, which is shown in the figure, while for Ca=�, a
steady shape does not exist, i.e. drop deforms continuously.

In Figure 13, the pressure at the wall is presented for the above two values of Ca. From this
figure we see that DP+, as well as the variation in pressure at the wall over the drop is larger
for the small value of Ca.

Figure 11. Effect of viscosity ratio l on pressure distribution along the wall at t %=3 for k=0.8 and
Ca=�. —, l=100; ���, l=5; � � �, l=0.2; – – –, l=1 (Poiseuille flow).

Figure 12. Effect of capillary number Ca on drop shape at t %=3 for k=0.8, l=5. (1) Ca=�, (2)
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Figure 13. Effect of capillary number Ca on pressure distribution along the wall at t %=3 for k=0.8,
l=5. � � �, Ca=�; —, Ca=0.1; – – –, Poiseuille flow.

3.2. Axisymmetric case

In Figure 14, the steady drop shape is compared with that presented by Martinez and Udell
[3] for the same values of non-dimensional parameters.

In Figure 15, the pressure at the wall and the pressure at the centreline of the tube is
presented. The dimensionless additional pressure drop DP+R/mV is 3.6. The value that
Martinez and Udell [3] give for the same case is 3.4. From this figure we can see also the
variation of pressure inside the drop. The pressure jump at the trailing end of the drop, as well
as at the leading end, is due to surface tension forces that are localized at the interface of the
drop.

In Figure 16, the general flow pattern of a drop that has reached in a permanent shape and
translates with steady velocity in Poiseuille flow is illustrated. This figure shows the velocity
vector field in and around a drop with the following non-dimensional parameters: k=0.73,
l=10, Ca=0.1 for the axisymmetric case. The flow field is shown in a reference frame that
moves at the drop velocity. In this frame a recirculation inside the drop appears. At the central
portion of the drop there is a forward flow, while there is a backward flow close to the
interface of the drop.

Figure 14. Comparison of steady drop shape with results of Martinez and Udell [3] for k=0.726, l=10,
Ca=0.1. —, Present results; � � �, results of Martinez and Udell [3].
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Figure 15. Pressure profile for a drop of k=0.726, l=10, Ca=0.1 at t=3 s. � � �, Along the tube
wall; —, along the tube centreline; – – – Poiseuille profile.

Figure 16. Velocity vector field for a drop of k=0.726, l=10, Ca=0.1 for the axisymmetric case, in a
reference frame that moves with drop velocity.

At the interface of the drop the flow around the drop changes direction. This means the
fluid close to the wall of the pipe moves with less velocity than the velocity of the drop, while
the fluid close to the centreline of the pipe moves with a higher velocity than the velocity of
the drop.

4. CONCLUSIONS

A level set approach coupled with a projection methodology was used to study the flow of a
viscous drop in a channel and a tube filled with a second immiscible viscous fluid. The above
technique was developed for the study of incompressible two-phase flow by Sussman et al. [9]
for the two-dimensional case. The technique is extended for the axisymmetric case and we
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apply it, as far as we know, for first time to the case of motion of drops in channels and tubes,
where there exists the influence of bounding walls. The present results are compared satisfac-
torily with results obtained by BIMs. In addition, numerical experiments are performed for the
study of the two-dimensional case. The main conclusions from this study are: the results of the
two-dimensional case agree qualitatively with those obtained by Martinez and Udell [3] for the
axisymmetric case. For small capillary numbers or large viscosity ratios, there exist steady
profiles that the viscous drops reach. For the other cases, drops deform continuously, elongate
and a jet of suspending fluid enters the drop from the back. The shape of the drop depends
strongly on capillary number. The additional pressure drop for less viscous drops than the
suspending fluid may be negative for large capillary numbers. Generally, the additional
pressure drop increases when capillary number decreases or viscosity ratio increases.
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